For Supervisor's use only

2

90310

Level 2 Chemistry, 2003

90310 Describe principles of chemical reactivity

Credits: Four 2.00 pm Monday 24 November 2003

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

A Periodic Table is printed on page 2 of this booklet.

You should answer ALL the questions in this booklet.

If you need more space for any answer, use the pages provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–11 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

Achievement Criteria	For Assessor's use only	
Achievement	Achievement with Merit	Achievement with Excellence
Describe and use thermochemical and equilibrium information.	Interpret information about thermochemical and equilibrium systems.	Evaluate and explain information about thermochemical and equilibrium systems.
Ove	rall Level of Performance	

Ų)
5	
ī	i
5	
Ĺ	ĺ
Ξ	Ì
Ш	Ì
ш	ı
Щ	
F	
ш	
\overline{c})
Щ	
	i
$\overline{\mathbf{a}}$	1
۵	ľ
H	
C)
Ē	
۲	
=	
ū	
Щ	
Ω	

18

He 4.0 10 10 Ne 20.2 20.2 36 Kr 83.8 83.8 Xe Xe 1311 86 Rh	222
17 9 F 19:0 17 CI 35:5 35:5 35:5 9	210
16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0	210
7 N 14.0 15 P 33. As 74.9 Sb 122 Sb 83. Bi	209
6 C C 12.0 Si Si 28.1 32 Ge 72.6 Sn 119 82 Sn 119 Pb	207
5 BB 10.8 13 AI 27.0 31 Ga 69.7 49 BI 115 BI TI	204
30 30 Zn 65.4 65.4 112 80 Rg	201
29 Cu 63.5 Ag 108 79 Au	197
Atomic Mass 10 28 29 28 29 58.7 6 46 47 46 47 78 78	195
9 CO CO 58.9 45 Rh 103 Tr 77 Tr	192 109 Mt
	190 108 Hs
Atomic Number 1 8 25 26 26 26 26 25 26 26 26 24.9 25.0 25.9 25.9 25.9 25.9 25.9 25.9 25.9 26.9 101 25.9 98.9 101 25.9 98.9 101 25.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26	186 107 Bh
Ator 6 6 Cr 52.0 Mo 95.9 W 74 W	1 1
23	181 105 Db
22 Ti 47.9 40 Zr 91.2 72	179 104 Rf
39 39 45.0 39 88.9 Res.9	175 103 Lr 262
2	137 88 Ra 226
3 Li 6.9 6.9 7 39.1 39.1 37 85.5 85.5 85.5 85.5	133 87 Fr 223

70	102
Yb	No
173	255
69	101
Tm	Md
169	258
68	100
Er	Fm
167	257
67	99
Ho	Es
165	254
66	98
Dy	Cf
163	251
65	97
Tb	Bk
159	249
64	96
Gd	Cm
157	247
63	95
Eu	Am
152	241
62	94
Sm	Pu
150	239
61	93
Pm	Np
147	237
60	92
Nd	U
144	238
59	91
Pr	Pa
141	231
58	90
Ce	Th
140	232
57	89
La	Ac
139	227

Lanthanide Series

Actinide Series

You are advised to spend 45 minutes answering the questions in this booklet.

Assessor's use only

QUESTION ONE

A 1 g lump of calcium carbonate was added to a 250 mL beaker containing 100 mL of 1.0 mol L^{-1} hydrochloric acid solution, at room temperature (25°C). Bubbles of carbon dioxide were produced.

The experiment was repeated under different conditions, as given below.

or EACH change, describe how the reaction rate would be affected. se the words 'increase', 'decrease' or 'remain the same' in each answer.
hange 1 ne temperature of the reaction mixture was increased to 40°C.
fect:
hange 2 00 mL of water was added to the acid. 100 mL of this diluted acid solution was added to a g lump of calcium carbonate.
fect:
hange 3 ne 1 g lump of calcium carbonate was ground to form a powder, and then 100 mL of the 0 mol $\rm L^{-1}$ hydrochloric acid was added.
fect:
hange 4 500 mL beaker was used instead of the 250 mL beaker, but the same amounts of actants were used.
fect:
explain the effect on the reaction rate for Change 1 and Change 2 above by referring to the oblisions of particles. The change 1:
hange 2:
the trace of the t

QUESTION TWO

Assessor's use only

Classify EACH of the following processes as either endothermic or exothermic.

	Process	endothermic or exothermic
(a)	$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(g)$ $\Delta_r H = -286 \text{ kJ mol}^{-1}$	
(b)	Photosynthesis – food-making process in plants	
(c)	Freezing of water	
(d)	Dissolving sodium hydroxide in water (the temperature increases)	
(e)	Sublimation of solid carbon dioxide to carbon dioxide gas	

QUESTION THREE

Hydrogen peroxide, a common bleaching agent, decomposes as follows:

$$H_2O_2(l) \longrightarrow H_2O(l) + \frac{1}{2}O_2(g) \qquad \Delta_l H = -98.2 \text{ kJ mol}^{-1}$$

- (a) Calculate how much energy is released when 5 moles of hydrogen peroxide decompose.
- (b) Calculate how much energy is released when 1.0 g of oxygen is formed by the decomposition of hydrogen peroxide.
- (c) Calculate the mass of hydrogen peroxide that must decompose to produce 600 kJ of energy.

QUESTION FOUR

Write the equilibrium constant expression for EACH of the following reactions:

(a)
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

$$K_c =$$

(b)
$$4NH_3(g) + 5O_2(g) \iff 4NO(g) + 6H_2O(g)$$
 $K_c =$

(c)
$$CH_3COOH(aq) \iff H^+(aq) + CH_3COO^-(aq)$$
 $K_c =$

QUESTION FIVE

(c)

Two oxides of nitrogen exist in the following equilibrium system:

$$2NO_2(g) \iff N_2O_4(g)$$
 $\Delta_r H = -57 \text{ kJ mol}^{-1} \text{ and } K_c = 6.3 \times 10^{-5} \text{ at } 227^{\circ}\text{C}$

- (a) Which oxide would you expect to be present in the greater concentration at equilibrium? (Circle your answer.) NO_2 or N_2O_4
- (b) Justify your answer to (a) above.

NO₂ is a brown gas and N₂O₄ is a colourless gas.

What would you expect to observe when the following changes are applied to the equilibrium system? In EACH case, justify your observation.

(i) The temperature is increased to 500°C (without changing the pressure).

Observation: _____
Explanation:

(ii) More NO₂ gas is added to the system.

Observation:

Explanation:

QUESTION SIX

Assessor's use only

The pH of a 0.10 mol L^{-1} solution of acid **HX** and the pH of a 0.10 mol L^{-1} solution of acid **HY** are measured. The pH of acid **HX** is 3 and the pH of acid **HY** is 1.

)	Which of the two acids, HX or HY , is the stronger acid?				
	(Circle your answer.)	нх	or	НҮ	
	Justify your answer to (a) i	n terms of th	ne measi	ured pH.	
	Describe another test that above is the stronger of the Describe what you would o	e two.		to confirm that the acid you selected in (a) ald expect to observe.	
	above is the stronger of the	e two.			
	above is the stronger of the	e two.			
	above is the stronger of the	e two.			
	above is the stronger of the	e two.			

Asse	ssor's
IISA	only

QUE	ESTION SEVEN
HCC	$O_3^-(aq)$ is a species that may act as an acid or a base. Consider the equilibrium system:
	$HCO_3^-(aq) + H_2O(l) \iff H_2CO_3(aq) + OH^-(aq)$
(a)	Is $HCO_3^-(aq)$ acting as an acid or a base?
	(Circle your answer.) ACID or BASE
(b)	Justify your answer to (a) above.
	ESTION EIGHT
A sa	mple of solid ammonium chloride, NH ₄ Cl, is dissolved in water. The solution formed is tested is found to be acidic.
	ain why the solution is acidic. Include appropriate equation(s) in your answer.
•	

QUESTION NINE

Assessor's use only

Complete the following table by showing the:

- hydronium ion concentration for both solution A and solution B
- hydroxide ion concentration for solution B
- pH of solution **A**.

$$K_{\rm W} = [{\rm H_3O^+}] \ [{\rm OH^-}] = 1.00 \times 10^{-14}$$

Solution	[H ₃ O ⁺] / mol L ⁻¹	[OH ⁻] / mol L ⁻¹	рН
Α		0.0288	
В			5.24

Extra paper for continuation of answers if required. Clearly number the question.

Assessor's use only

Question Number	

Extra paper for continuation of answers if required. Clearly number the question.

Assessor's use only

Question Number	